75 resultados para Colour Vision

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avian vision is highly developed, with bird retinas containing rod and double-cone photoreceptors, plus four classes of single cones subserving tetrachromatic colour vision. Cones contain an oil droplet, rich in carotenoid pigments (except VS/ultraviolet-sensitive cones), that acts as a filter, substantially modifying light detected by the photoreceptor. Using dietary manipulations, we tested the effects of carotenoid availability on oil droplet absorbance properties in two species: Platycercus elegans and Taeniopygia guttata. Using microspectrophotometry, we determined whether manipulations affected oil droplet carotenoid concentration and whether changes would alter colour discrimination ability. In both species, increases in carotenoid concentration were found in carotenoid-supplemented birds, but only in the double cones. Magnitudes of effects of manipulations were often dependent on retinal location. The study provides, to our knowledge, the first experimental evidence of dietary intake over a short time period affecting carotenoid concentration of retinal oil droplets. Moreover, the allocation of carotenoids to the retina by both species is such that the change potentially preserves the spectral tuning of colour vision. Our study generates new insights into retinal regulation of carotenoid concentration of oil droplets, an area about which very little is known, with implications for our understanding of trade-offs in carotenoid allocation in birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ring species, in which reproductively isolated forms are connected by a chain of intermediate populations, provide valuable insights into the maintenance of trait variability, divergence in sympatry, and the how small changes can lead to species level differences. The parrot Platycercus elegans of eastern Australia is highly variable in plumage coloration in the wild, ranging from pale yellow to deep crimson in the chest, rump and head. It has been suggested as the only known parrot ring species worldwide, and one of less than ~25 ring species amongst all organisms. We test hypotheses for the information signalled by the colour variation, and for the maintenance of the variability.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colour and luminance-contrast thresholds were measured in the presence of dynamic Random Luminance-contrast Masking (RLM) in individuals who had had past diagnoses of optic neuritis (ON) some of whom have progressed to a diagnosis of multiple sclerosis (MS). To explore the spatio-temporal selectivity of chromatic and luminance losses in MS/ON, thresholds were measured using three different sizes and modulation rates of the RLM displays: small checks modulating slowly, medium-sized checks with moderate modulation and large checks modulating rapidly. The colour of the chromatic stimuli used were specified in a cone-excitation space to measure relative impairments in red–green and blue–yellow chromatic channels. These observers showed chromatic thresholds along the L/(L + M) axis that were higher than those along the S-cone axis for all display sizes/modulation rates and both red-green and blue-yellow colour thresholds were higher than luminance-contrast thresholds. The principal change in thresholds with spatio-temporal changes in the display was a reduction in thresholds for L/(L + M) and S-cones with increasing check size and modulation rate. However, luminance contrast thresholds did not change with display size/rate. These results are consistent with MS/ON selectively affecting processing in colour pathways rather than in the magnocellular pathway, and that within the colour pathways neurones with opposed L- and M-cone inputs are more damaged than colour-opponent neurons with input from S-cones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although UV vision was first demonstrated in birds in the early 1970s, its function is still unknown. Here we review the evidence for UV vision in birds, discuss the special properties of UV light, lay out in detail hypotheses for the function of UV vision in birds and discuss their plausibility. The main hypotheses are that UV vision functions: (i) in orientation, (ii) in foraging and (iii) in signalling. The first receives support from studies of homing pigeons, but it would be unwise to conclude that orientation is UV's primary function in all birds. It is especially important to test the signalling hypothesis because bird plumage often reflects UV and tests of theories of sexual selection have virtually always assumed that birds perceive plumage ''colours'' as humans do. A priori this assumption is unlikely to be correct, for unlike humans, birds see in the UV, have at least four types of cones and have a system of oil droplets which filters light entering individual cones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite major differences between human and avian colour vision, previous studies of cuckoo egg mimicry have used human colour vision (or standards based thereon) to assess colour matching. Using ultraviolet-visible reflectance spectrophotometry (300-700 nm), we measured museum collections of eggs of the red-chested cuckoo and its hosts. The first three principal components explained more than 99% of the variance in spectra, and measures of cuckoo-host egg similarity derived from these transformations were compared with measures of cuckoo-host egg similarity estimated by human observers unaware of the hypotheses we were testing. Monte Carlo methods were used to simulate laying of cuckoo eggs at random in nests. Results showed that host and cuckoo eggs were very highly matched for an ultraviolet versus greenness component, which was not detected by humans. Furthermore, whereas cuckoo and host were dissimilar in achromatic brightness, humans did not detect this difference. Our study thus reveals aspects of cuckoo-host egg colour matching which have hitherto not been described. These results suggest subtleties and complexities in the evolution of host-cuckoo egg mimicry that were not previously suspected. Our results also have the potential to explain the longstanding paradox that some host species accept cuckoo eggs that are non-mimetic to the human eye.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As in many parrots, the plumage of the budgerigar Melopsittacus undulatus reflects near-ultraviolet (UVA) wavelengths (300-400 nm) and exhibits UVA-induced fluorescence. However, there have, to our knowledge, been no tests of whether the yellow fluorescence observed under intense UVA illumination has any role in signalling. Four experiments were carried out on wild-type budgerigars, where the presence and absence of UV reflectance and fluorescence were manipulated using filters. Few studies have attempted to separate the contribution of UV reflectance to plumage hue as opposed to brightness or distinguish between a role in sexual as opposed to social preferences. However, our first experiments show that not only do females consistently prefer UV-reflecting males, but also that the observed preferences are due to removal of UV affecting the perceived hue rather than brightness. Furthermore, we found no effect Of the light environment on male response to females, suggesting that the female preferences relate to plumage colour per se. Whilst UV reflectance appears important in heterosexual choice by, females, it has no detectable influence on same-sex association preferences. The results from the second series of experiments suggest that enhancement of the budgerigar's yellow coloration through fluorescence has no effect on male attractiveness. However, the fluorescent plumage may play a role in signalling by virtue of the fact that it absorbs UVA and so increases contrast with nearby UV-reflecting plumage. Our study provides convincing evidence that UV reflectances can play a role in mate choice in non-passerines, but no evidence that the yellow fluorescence observed under UVA illumination is itself important as a signal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Whereas humans have three types of cone photoreceptor, birds have four types of single cones and, unlike humans, are sensitive to ultraviolet light (UV, 320-400 run). Most birds are thought to have either a violet-sensitive single cone that has some sensitivity to UV wavelengths (for example, many non-passerine species) or a single cone that has maximum sensitivity to UV (for example, oscine passerine. species). UV sensitivity is possible because, unlike humans, avian ocular media do not absorb UV light before it reaches the retina. The different single cone types and their sensitivity to UV light give birds the potential to discriminate reflectance spectra that look identical to humans. It is clear that birds use UV signals for a number of visual tasks, but there are few studies that directly demonstrate a role for UV in the detection of chromaticity differences (i.e. colour vision) as opposed to achromatic brightness. If the output of the violet/UV cone is used in achromatic visual tasks, objects reflecting more UV will appear brighter to the bird. 11, however, the output is used in a chromatic mechanism, birds will be able to discriminate spectral stimuli according to the amount of reflected light in the UV part of the spectrum relative to longer wavelengths. We have developed a UV 'colour blindness' test, which we have given to a passerine (European starling) and a non-passerine (Japanese quail) species. Both species learnt to discriminate between a longwave control of orange vs red stimuli and UV vs 'non-UV' stimuli, which were designed to be impossible to differentiate by achromatic mechanisms. We therefore conclude that the output of the violet/UV cone is involved in a chromatic colour vision system in these two species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes, suggesting tetrachromacy in C. decresii, and we also provide the first evidence of UV sensitivity in agamid lizards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured thresholds for detecting changes in colour and in luminance contrast in observers with multiple sclerosis (MS) and/or optic neuritis (ON) to determine whether reduced sensitivity occurs principally in red-green or blue-yellow second-stage chromatic channels or in an achromatic channel. Colour thresholds for the observers with MS/ON were higher in the red-green direction than in the blue-yellow direction, indicating greater levels of red-green loss than blue-yellow loss. Achromatic thresholds were raised less than either red-green or blue-yellow thresholds, showing less luminance-contrast loss than chromatic loss. With the MS/ON observers, blue-yellow and red-green thresholds were positively correlated but increasing impairment was associated with more rapid changes in red-green thresholds than blue-yellow thresholds. These findings indicate that demyelinating disease selectively reduces sensitivity to colour vision over luminance vision and red-green colours over blue-yellow colours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experiments (Dittrich et al. (Proc. R. Soc. Lond. B 251, 195 (1993))) suggest that pigeon perception of wasp mimicry by hoverflies is similar to that of humans and of computer-based image matching. However, the relations are nonlinear and may explain why some species are abundant despite their being poor mimics to the human eye. We suggest that these discrepancies between pigeon and human categorization may lie in the differences between avian and primate colour vision. As pigeon categorization and computer image analysis were both assessed by using colour slides designed for human vision, they lacked the natural colour information available to wild birds, in particular that from ultraviolet (uv) wavelengths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A microspectrophotometric study was conducted on the retinal photoreceptors of four species of bird: cut-throat finches (Amadina fasciata), gouldian finches (Erythrura gouldiae), white-headed munias (Lonchura maja) and plum-headed finches (Neochmia modesta). Spectral characteristics of the photoreceptors in all four species were very similar. Rods contained a medium-wavelength-sensitive visual pigment with a wavelength of maximum absorbance at 502-504 nm. Four spectrally distinct types of single cone contained a visual pigment with wavelength of maximum absorbance at either 370-373 nm (ultraviolet-sensitive), 440-447 nm (short-wavelength-sensitive); 500 nm (medium-wavelength-sensitive) or 562-565 nm (long-wavelength-sensitive). Oil droplets in the ultraviolet-sensitive single cones showed no detectable absorption between 330 nm and 800 nm. Oil droplets in the short-, medium-, and long-wavelength-sensitive single cones had cut-off wavelengths at 415-423 nm, 510-520 nm and 567-575 nm, respectively. Double cones contained the visual pigment with wavelength of maximum absorbance at 562-565 nm observed in long-wavelength-sensitive single cones. Only the principal member of the double cone pair contained an oil droplet (P-type, cut-off wavelength at 414-489 nm depending on species and retinal location). Spectral transmittance of the intact ocular media of each species was measured along the optic axis. Wavelengths of 0.5 transmittance for all species were very similar (316-318 nm).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Pal trs caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (lambda(max)) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitive-single cones of both species cut off wavelengths below 570-573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise lambda(max) of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy also varies between the two species and may reflect differences in their visual ecology.